Classification is a Strong Baseline for Deep Metric Learning

Hao-Yu Wu (Pinterest, Inc.), Andrew Zhai (Pinterest, Inc.)

Abstract
Deep metric learning aims to learn a function mapping image pixels to embedding feature vectors that model the similarity between images. Two major applications of metric learning are content-based image retrieval and face verification. For the retrieval tasks, the majority of current state-of-the-art (SOTA) approaches are triplet-based non-parametric training. For the face verification tasks, however, recent SOTA approaches have adopted classification-based parametric training. In this paper, we look into the effectiveness of classification based approaches on image retrieval datasets. We evaluate on several standard retrieval datasets such as CAR-196, CUB-200-2011, Stanford Online Product, and In-Shop datasets for image retrieval and clustering, and establish that our classification-based approach is competitive across different feature dimensions and base feature networks. We further provide insights into the performance effects of subsampling classes for scalable classification-based training, and the effects of binarization, enabling efficient storage and computation for practical applications.

DOI
10.5244/C.33.224
https://dx.doi.org/10.5244/C.33.224

Files
Paper (PDF)

BibTeX
@inproceedings{BMVC2019,
title={Classification is a Strong Baseline for Deep Metric Learning},
author={Hao-Yu Wu and Andrew Zhai},
year={2019},
month={September},
pages={224.1--224.12},
articleno={224},
numpages={12},
booktitle={Proceedings of the British Machine Vision Conference (BMVC)},
publisher={BMVA Press},
editor={Kirill Sidorov and Yulia Hicks},
doi={10.5244/C.33.224},
url={https://dx.doi.org/10.5244/C.33.224}
}