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Abstract

Ptychography is a coherent diffractive imaging method that captures multiple diffrac-
tion patterns of a sample with a set of shifted localized illuminations (“probes”). The
reconstruction problem, known as “phase retrieval”, is typically solved by iterative algo-
rithms. In this paper, we propose PtychoNet, a deep learning based method to perform
phase retrieval for ptychography in a non-iterative manner. We devise a generative net-
work to encode a full ptychography scan, reverse the diffractions at each scanning point
and compute the amplitude and phase of the object. We demonstrate successful recon-
structions using PtychoNet as well as recovering fine features in the case of extreme
sparse scanning where conventional iterative methods fail to give recognizable features.

1 Introduction
Coherent diffractive imaging (CDI) is a technique of measuring the scattering from an object
illuminated by a coherent beam, e.g. laser light or X-ray. For CDI, the analysis of the object
relies on a reconstruction algorithm to recover the object structure based on the measured
diffraction pattern. However, the reconstruction problem is generally ill-posed, because the
intensity of a diffraction pattern is captured on the detector while the phase information is
lost. Phase retrieval methods are thus developed to recover both the amplitude and phase of
the object of interest [40].

Among the CDI methods, ptychography offers the advantage of imaging large objects
with high resolution. The method captures multiple diffraction patterns of an object with
a set of shifted localized illuminations [8, 44]. The overlap of the illuminations provides
redundancy for robust reconstruction of the object with a resolution that is not limited by
the probe size nor the scanning step size but the highest detectable scattering angle. X-ray
ptychography allows for the reconstruction of object structures on the nanometer scale in
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3D [6], practical for studies in e.g. biology, geology, and material science. Electron pty-
chography provides sub-angstrom resolution for 2D materials [20] and optical ptychography
allows the imaging of large and thick samples with 3D isotropic micron-resolution [29, 33].

Challenges of ptychography reside in its long data acquisition time and the computa-
tional complexity in data processing. The scanning nature of the method is advantageous for
imaging extended field of views of an object, however, at the cost of long experimental time
and the increased likelihood of serious radiation damage of the sample. For X-ray imag-
ing, it is predictable that with synchrotron upgrades, the coherent photon flux will increase
by a few orders of magnitude, presenting a great computational challenge to reconstruction
algorithms if corresponding increase in acquisition speed is also achieved with upgraded in-
strumentation. Therefore, sparse scanning schemes and fast reconstruction algorithms will
bring immediate benefits to experiments, including high-throughput and low-dose imaging,
as well as provide a solution to the elevated computational demand in the near future. In this
work, we introduce a new ptychographic reconstruction method based on machine learning,
presenting a possible direction to overcome the challenges.

1.1 Formulation
In CDI, an object of interest is shone by a light source and the incident wave is diffracted by
object structure. On the far-field detector, this results in a Fourier transform

I = jF (y)j2; (1)

where y is the exit wave of the object. In ptychography, the illumination (“probe”) is shifted
laterally to generate multiple views of the object:

I j(q) = jF [P(r� r j)O(r)]j2; (2)

where q is the coordinate in the reciprocal space, r is in real space, r j is the probe position,
P is the probe and O is the object. The reconstruction problem, from diffraction images to
real space, is called “phase retrieval” because the far-field detector only captures the inten-
sity, given by Eq. (1), and the reconstruction is essentially recovering the phase. Traditional
methods of reconstruction are based on iteration to satisfy the real space and Fourier con-
straints alternately [9]. These methods normally take a few hundred iterations to converge.

We presented PtychoNet, a deep learning based method to perform phase retrieval for
ptychography. PtychoNet reverses the diffractions at each scanning point, and then merges
them to generate the amplitude and phase of the original object. Using PtychoNet, we are
able to compute phase retrieval in only one forward pass without any iterations.

1.2 Contributions
Our contributions in this paper are mainly as follows:

� We describe the first non-iterative, end-to-end method to solve the phase retrieval prob-
lem for real-space ptychography without limitation on scanning patterns.

� We presented a successful demonstration of PtychoNet through simulations and show
its robustness under extreme low overlap conditions when conventional methods failed.

� By using PtychoNet output to initialize iterative algorithms, we show that reconstruc-
tion of fine features is made possible for a dataset with almost no overlap, which is not
achievable previously. This new finding urges the re-examination of the ptychography
overlap conditions and expands the potential of ptychography.
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2 Related Works

Generative deep learning.Convolutional neural networks (CNNs) [24, 25] for image syn-
thesis have seen remarkable progress among recent successful applications. Early methods
such as variational autoencoder [23] have some success but often suffer from blurry images.
Auto-regressive models like PixelCNN [38, 46, 51] compute each pixel progressively us-
ing a probability model, which is ef�cient but struggles to generate larger images. In order
to generate sharp and detailed images, researchers use convolution transpose (“deconvo-
lution”) to build deep neural networks that enable high-resolution upsampling, notably in
image segmentation [31, 37]. Generative Adversarial Networks (GANs) [11, 18, 41] train a
pair of generator network and discriminator network as adversaries and drastically improve
the quality of generated samples.

Ptychography and related techniques. Ptychography [8, 44] is a lensless coherent
diffractive imaging method that utilizes redundancy for high resolution. For 3D objects,
ptychographic X-ray computed tomography (PXCT) offers quantitative electron density and
absorption tomograms with nanoscopic resolution [5, 6, 15]. Electron ptychography [20]
and optical ptychography [29, 33] also provide high-resolution in their respective imaging
regimes. On the other hand, Fourier ptychography microscopy (FPM) [53] generates high-
resolution image by combining a collection of images with different illumination angles.
Fourier ptychographic tomography (FPT) [16] at the optical regime shows reconstruction of
3D object at sub-micron resolution.

Ptychographic reconstruction methods.Conventional reconstruction methods for pty-
chography are based on iterative phase retrieval algorithms [9],e.g. PIE [8, 45], ePIE [32],
difference map (DM) [48, 49] and maximum likelihood [14, 50]. Recently automatic dif-
ferentiation is employed to solve phase retrieval with more straightforward formulations and
better parallelization support [10, 19, 34]. There are also closed form formulations using
Wigner-distribution deconvolution (WDD) [2], but WDD is highly susceptible to noise. Re-
cently, techniques such as iterative re�nement [28] and low-rank matrix completion [26]
are adopted to suppress the noise, achieving comparable results with aforementioned well-
established methods.

Machine learning reconstruction methods.Machine learning is revolutionizing recon-
struction algorithms. Paine and Fienup propose to compute smart initial guesses for phase
retrieval using CNNs [39]. At present, there is a lack of machine learning applications in the
standard real-space ptychography, but there have been demonstrations of machine learning in
FPM. PtychNet [21] and cGAN-FP [3] use CNNs to reconstruct FPM on simulation datasets,
and [35, 36, 52] extend CNN-based methods to sequential FPM and test on real experimen-
tal data. In general, CNN generative methods work well with a wide range of imaging se-
tups,e.g. optical microscopy [42], limited-angle tomography [12], holography [43], imaging
through scattering media [30], nonlinear electromagnetic inverse scattering [27] and imaging
of phase-only objects [47]. However to our knowledge, there has been no demonstration of
ptychographic reconstruction based on diffraction patterns using machine learning.

3 Notation

We �rst describe the ptychographic imaging and reconstruction in discretized pixel space.
We de�ne the objectO as a complex-valuedH � W image, and the size of probeP is h� w.
With P �xed, the full ptychographic scan is determined by a set ofN probe positions,e.g.
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Figure 1: Architecture of PtychoNet. In the network: C - convolution, size 4x4, stride 2; Ct -
convolution transpose, size 4x4, stride 2; BN - batch normalization;s - sigmoid. Activation
functions in the encoder is LeakyReLU,a = 0:2; ReLU in the decoder.

ALGORITHM 1: Reconstruction using PtychoNet.

Input: Full scanA 2 RN� h� w
+ , scan layoutM 2 ZN� 4.

Output: Object imageY 2 R2� H� W.
1 Y = K = 02� H� W;
2 for each diffraction imageA j in parallel do
3 Compute the corresponding object patchY j in real space with inputA j ;
4 M j (Y) = M j (Y)+ Y j ;
5 M j (K) = M j (K)+ 1;
6 end
7 Y = Y=max(K;1);

rectangular mesh pattern, concentric pattern or Fermat spiral pattern [17]. For convenience
to describe algorithms, we can store all the scanning positions by recording the top, bottom,
left, and right pixels[t;b; l ; r] in a layout matrixM 2 ZN� 4. With an abuse of notation, we
de�ne the projection operator

M j (O) = O[M[ j;0] : M[ j;1];M[ j;2] : M[ j;3]] (3)

to acquire the valid range of the diffraction image at scanning positionj, and (2) becomes

I j =
1

hw




 DFT[P� M j (O)]




 2 ; (4)

where 1=hw is a normalization factor for Discrete Fourier Transform (DFT). What the de-
tector actually captures is the phase-less intensityI j 2 Rh� w

+ . For phase retrieval, we directly
use the amplitudeA j =

p
I j instead ofI j . We stack up allA j in a new dimension to form

A(O;P;M) = [ A1;A2; : : : ;AN] 2 RN� h� w
+ and de�ne it as a ptychography or a “full scan” of

the input objectO under probeP and layoutM.

4 PtychoNet

PtychoNet is a convolutional encoder-decoder network to compute real space images from
ptychographic scans (architecture shown in Figure 1). In order to solve such an inverse
problem, we try to exploit every image and meanwhile enforce consistency in overlapping
regions. For that purpose, our strategy is to reconstruct every single one of the images, and
then stitch the local patches later according to their spatial relations.
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The input of the network is a full scanA, with known layoutM. The encoder side
encodes each diffraction imageA j = A[ j; :; :] individually and the decoder side computes
their corresponding object patchesY j . Here we represent the patches using their amplitude
and phase,Y j 2 R2� h� w. For the �nal output, we initialize an all-zero output matrixY 2
R2� H� W and a counter matrixK 2 Z2� H� W. We add eachY j to Y and increase the counter
K on the its scanning position. Finally we average the sums of all the output patches to
compute the full object. The complete reconstruction is described in Algorithm 1.

For the loss to minimize during training, it is feasible to include terms such as pixelwise
loss, perceptual loss [7] and adversarial loss [11]. Here we propose two losses. The �rst is a
plain mean square error (MSE)

L 1(Y;O) = L MSE(Y;O) =
1

HW
kY � Ok2 : (5)

Apart from measuring the difference in the real space, we can also constrain the reciprocal
space. Imagine we perform ptychography on the outputY instead of the real object, we
shall also obtain a ptychographic scan pattern that is close to the inputA. Using (4), we can
compute the MSE of computed and true diffractions, simply called DFT loss

L DFT(Y;O;A;P;M) =
1

Nhw

N

å
j= 0










1
p

hw




 DFT[P� M j (Y)]




 � A j










2

; (6)

and thus we propose the dual space error (DSE)

L 2(Y;O;A;P;M) = L MSE+ l L DFT: (7)

In our experiment,l = 1.

5 Experiments

5.1 Implementation Details

Figure 2: Probe and scan layout. (a) probe
amplitude; (b) probe phase; (c) layout of Fer-
mat spiral pattern. Green dots show the cen-
ters of every scanning position and red rectan-
gle shows the size of the probe w.r.t. object.

We generated a simulation dataset for train-
ing using Caltech-256 Object Category
Dataset [13]. To construct a real space “ob-
ject”, we paired two images from the dataset,
one as amplitude map and one as phase. The
amplitude was scaled and shifted to[0:5;1]
and the phase was in[� p=3;0]. We split
these images into two disjoint sets, from
which we generated 2,000 training objects
and 100 test objects respectively. We gen-
erated a �xed probe of size 128� 128 and
performed ptychography scans on all images
using Fermat spiral pattern [17], shown in
Figure 2. In our resolution settings, our im-
ages were resized to 478� 480 to cover the
scanning trajectory and 354 diffraction images were computed during a complete scan. We
used Adam optimizer [22] to train PtychoNet with a learning rate of 0.0002 andb1 = 0:5.


