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Abstract

Ptychography is a coherent diffractive imaging method that captures multiple diffrac-
tion patterns of a sample with a set of shifted localized illuminations (“probes”). The
reconstruction problem, known as “phase retrieval”, is typically solved by iterative algo-
rithms. In this paper, we propose PtychoNet, a deep learning based method to perform
phase retrieval for ptychography in a non-iterative manner. We devise a generative net-
work to encode a full ptychography scan, reverse the diffractions at each scanning point
and compute the amplitude and phase of the object. We demonstrate successful recon-
structions using PtychoNet as well as recovering fine features in the case of extreme
sparse scanning where conventional iterative methods fail to give recognizable features.

1 Introduction
Coherent diffractive imaging (CDI) is a technique of measuring the scattering from an object
illuminated by a coherent beam, e.g. laser light or X-ray. For CDI, the analysis of the object
relies on a reconstruction algorithm to recover the object structure based on the measured
diffraction pattern. However, the reconstruction problem is generally ill-posed, because the
intensity of a diffraction pattern is captured on the detector while the phase information is
lost. Phase retrieval methods are thus developed to recover both the amplitude and phase of
the object of interest [40].

Among the CDI methods, ptychography offers the advantage of imaging large objects
with high resolution. The method captures multiple diffraction patterns of an object with
a set of shifted localized illuminations [8, 44]. The overlap of the illuminations provides
redundancy for robust reconstruction of the object with a resolution that is not limited by
the probe size nor the scanning step size but the highest detectable scattering angle. X-ray
ptychography allows for the reconstruction of object structures on the nanometer scale in
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3D [6], practical for studies in e.g. biology, geology, and material science. Electron pty-
chography provides sub-angstrom resolution for 2D materials [20] and optical ptychography
allows the imaging of large and thick samples with 3D isotropic micron-resolution [29, 33].

Challenges of ptychography reside in its long data acquisition time and the computa-
tional complexity in data processing. The scanning nature of the method is advantageous for
imaging extended field of views of an object, however, at the cost of long experimental time
and the increased likelihood of serious radiation damage of the sample. For X-ray imag-
ing, it is predictable that with synchrotron upgrades, the coherent photon flux will increase
by a few orders of magnitude, presenting a great computational challenge to reconstruction
algorithms if corresponding increase in acquisition speed is also achieved with upgraded in-
strumentation. Therefore, sparse scanning schemes and fast reconstruction algorithms will
bring immediate benefits to experiments, including high-throughput and low-dose imaging,
as well as provide a solution to the elevated computational demand in the near future. In this
work, we introduce a new ptychographic reconstruction method based on machine learning,
presenting a possible direction to overcome the challenges.

1.1 Formulation
In CDI, an object of interest is shone by a light source and the incident wave is diffracted by
object structure. On the far-field detector, this results in a Fourier transform

I = |F (ψ)|2, (1)

where ψ is the exit wave of the object. In ptychography, the illumination (“probe”) is shifted
laterally to generate multiple views of the object:

I j(q) = |F [P(r− r j)O(r)]|2, (2)

where q is the coordinate in the reciprocal space, r is in real space, r j is the probe position,
P is the probe and O is the object. The reconstruction problem, from diffraction images to
real space, is called “phase retrieval” because the far-field detector only captures the inten-
sity, given by Eq. (1), and the reconstruction is essentially recovering the phase. Traditional
methods of reconstruction are based on iteration to satisfy the real space and Fourier con-
straints alternately [9]. These methods normally take a few hundred iterations to converge.

We presented PtychoNet, a deep learning based method to perform phase retrieval for
ptychography. PtychoNet reverses the diffractions at each scanning point, and then merges
them to generate the amplitude and phase of the original object. Using PtychoNet, we are
able to compute phase retrieval in only one forward pass without any iterations.

1.2 Contributions
Our contributions in this paper are mainly as follows:

• We describe the first non-iterative, end-to-end method to solve the phase retrieval prob-
lem for real-space ptychography without limitation on scanning patterns.

• We presented a successful demonstration of PtychoNet through simulations and show
its robustness under extreme low overlap conditions when conventional methods failed.

• By using PtychoNet output to initialize iterative algorithms, we show that reconstruc-
tion of fine features is made possible for a dataset with almost no overlap, which is not
achievable previously. This new finding urges the re-examination of the ptychography
overlap conditions and expands the potential of ptychography.
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2 Related Works
Generative deep learning. Convolutional neural networks (CNNs) [24, 25] for image syn-
thesis have seen remarkable progress among recent successful applications. Early methods
such as variational autoencoder [23] have some success but often suffer from blurry images.
Auto-regressive models like PixelCNN [38, 46, 51] compute each pixel progressively us-
ing a probability model, which is efficient but struggles to generate larger images. In order
to generate sharp and detailed images, researchers use convolution transpose (“deconvo-
lution”) to build deep neural networks that enable high-resolution upsampling, notably in
image segmentation [31, 37]. Generative Adversarial Networks (GANs) [11, 18, 41] train a
pair of generator network and discriminator network as adversaries and drastically improve
the quality of generated samples.

Ptychography and related techniques. Ptychography [8, 44] is a lensless coherent
diffractive imaging method that utilizes redundancy for high resolution. For 3D objects,
ptychographic X-ray computed tomography (PXCT) offers quantitative electron density and
absorption tomograms with nanoscopic resolution [5, 6, 15]. Electron ptychography [20]
and optical ptychography [29, 33] also provide high-resolution in their respective imaging
regimes. On the other hand, Fourier ptychography microscopy (FPM) [53] generates high-
resolution image by combining a collection of images with different illumination angles.
Fourier ptychographic tomography (FPT) [16] at the optical regime shows reconstruction of
3D object at sub-micron resolution.

Ptychographic reconstruction methods. Conventional reconstruction methods for pty-
chography are based on iterative phase retrieval algorithms [9], e.g. PIE [8, 45], ePIE [32],
difference map (DM) [48, 49] and maximum likelihood [14, 50]. Recently automatic dif-
ferentiation is employed to solve phase retrieval with more straightforward formulations and
better parallelization support [10, 19, 34]. There are also closed form formulations using
Wigner-distribution deconvolution (WDD) [2], but WDD is highly susceptible to noise. Re-
cently, techniques such as iterative refinement [28] and low-rank matrix completion [26]
are adopted to suppress the noise, achieving comparable results with aforementioned well-
established methods.

Machine learning reconstruction methods. Machine learning is revolutionizing recon-
struction algorithms. Paine and Fienup propose to compute smart initial guesses for phase
retrieval using CNNs [39]. At present, there is a lack of machine learning applications in the
standard real-space ptychography, but there have been demonstrations of machine learning in
FPM. PtychNet [21] and cGAN-FP [3] use CNNs to reconstruct FPM on simulation datasets,
and [35, 36, 52] extend CNN-based methods to sequential FPM and test on real experimen-
tal data. In general, CNN generative methods work well with a wide range of imaging se-
tups, e.g. optical microscopy [42], limited-angle tomography [12], holography [43], imaging
through scattering media [30], nonlinear electromagnetic inverse scattering [27] and imaging
of phase-only objects [47]. However to our knowledge, there has been no demonstration of
ptychographic reconstruction based on diffraction patterns using machine learning.

3 Notation
We first describe the ptychographic imaging and reconstruction in discretized pixel space.
We define the object O as a complex-valued H×W image, and the size of probe P is h×w.
With P fixed, the full ptychographic scan is determined by a set of N probe positions, e.g.
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Figure 1: Architecture of PtychoNet. In the network: C - convolution, size 4x4, stride 2; Ct -
convolution transpose, size 4x4, stride 2; BN - batch normalization; σ - sigmoid. Activation
functions in the encoder is LeakyReLU, α = 0.2; ReLU in the decoder.

ALGORITHM 1: Reconstruction using PtychoNet.

Input: Full scan A ∈ RN×h×w
+ , scan layout M ∈ ZN×4.

Output: Object image Y ∈ R2×H×W .
1 Y = K = 02×H×W ;
2 for each diffraction image A j in parallel do
3 Compute the corresponding object patch Y j in real space with input A j;
4 M j(Y) = M j(Y)+Y j;
5 M j(K) = M j(K)+1;
6 end
7 Y = Y/max(K,1);

rectangular mesh pattern, concentric pattern or Fermat spiral pattern [17]. For convenience
to describe algorithms, we can store all the scanning positions by recording the top, bottom,
left, and right pixels [t,b, l,r] in a layout matrix M ∈ ZN×4. With an abuse of notation, we
define the projection operator

M j(O) = O[M[ j,0] : M[ j,1],M[ j,2] : M[ j,3]] (3)

to acquire the valid range of the diffraction image at scanning position j, and (2) becomes

I j =
1

hw

∥∥DFT[P ·M j(O)]
∥∥2

, (4)

where 1/hw is a normalization factor for Discrete Fourier Transform (DFT). What the de-
tector actually captures is the phase-less intensity I j ∈Rh×w

+ . For phase retrieval, we directly
use the amplitude A j =

√
I j instead of I j. We stack up all A j in a new dimension to form

A(O;P,M) = [A1,A2, . . . ,AN ] ∈RN×h×w
+ and define it as a ptychography or a “full scan” of

the input object O under probe P and layout M.

4 PtychoNet
PtychoNet is a convolutional encoder-decoder network to compute real space images from
ptychographic scans (architecture shown in Figure 1). In order to solve such an inverse
problem, we try to exploit every image and meanwhile enforce consistency in overlapping
regions. For that purpose, our strategy is to reconstruct every single one of the images, and
then stitch the local patches later according to their spatial relations.
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The input of the network is a full scan A, with known layout M. The encoder side
encodes each diffraction image A j = A[ j, :, :] individually and the decoder side computes
their corresponding object patches Y j. Here we represent the patches using their amplitude
and phase, Y j ∈ R2×h×w. For the final output, we initialize an all-zero output matrix Y ∈
R2×H×W and a counter matrix K ∈ Z2×H×W . We add each Y j to Y and increase the counter
K on the its scanning position. Finally we average the sums of all the output patches to
compute the full object. The complete reconstruction is described in Algorithm 1.

For the loss to minimize during training, it is feasible to include terms such as pixelwise
loss, perceptual loss [7] and adversarial loss [11]. Here we propose two losses. The first is a
plain mean square error (MSE)

L1(Y,O) = LMSE(Y,O) =
1

HW
‖Y−O‖2 . (5)

Apart from measuring the difference in the real space, we can also constrain the reciprocal
space. Imagine we perform ptychography on the output Y instead of the real object, we
shall also obtain a ptychographic scan pattern that is close to the input A. Using (4), we can
compute the MSE of computed and true diffractions, simply called DFT loss

LDFT(Y,O;A,P,M) =
1

Nhw

N

∑
j=0

∥∥∥∥ 1√
hw

∥∥DFT[P ·M j(Y)]
∥∥−A j

∥∥∥∥2

, (6)

and thus we propose the dual space error (DSE)

L2(Y,O;A,P,M) = LMSE +λLDFT. (7)

In our experiment, λ = 1.

5 Experiments

5.1 Implementation Details

(a) (b) (c)

Figure 2: Probe and scan layout. (a) probe
amplitude; (b) probe phase; (c) layout of Fer-
mat spiral pattern. Green dots show the cen-
ters of every scanning position and red rectan-
gle shows the size of the probe w.r.t. object.

We generated a simulation dataset for train-
ing using Caltech-256 Object Category
Dataset [13]. To construct a real space “ob-
ject”, we paired two images from the dataset,
one as amplitude map and one as phase. The
amplitude was scaled and shifted to [0.5,1]
and the phase was in [−π/3,0]. We split
these images into two disjoint sets, from
which we generated 2,000 training objects
and 100 test objects respectively. We gen-
erated a fixed probe of size 128× 128 and
performed ptychography scans on all images
using Fermat spiral pattern [17], shown in
Figure 2. In our resolution settings, our im-
ages were resized to 478× 480 to cover the
scanning trajectory and 354 diffraction images were computed during a complete scan. We
used Adam optimizer [22] to train PtychoNet with a learning rate of 0.0002 and β1 = 0.5.
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6 GUAN ET AL.: PTYCHONET

(a) (b) (c) (d)

Amp.

Phase
Mean PSNR – 15.60 14.55 14.39
Mean SSIM – 0.7496 0.7154 0.8864

Table 1: Training and reconstruction on Caltech-256. (a) Ground truth. (b) PtychoNet
(MSE). (c) PtychoNet (DSE). (d) Difference map.

(a) (b) (c)

Phase

Table 2: Reconstruction on BrainMaps dataset using a Caltech-256 trained PtychoNet. (a)
Ground truth. (b) PtychoNet (MSE). (c) PtychoNet (DSE).
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5.2 Comparison with Iterative Algorithms
We compared the reconstruction of PtychoNet with difference map (DM) method. For Pty-
choNet, we trained the network using MSE (5) and DSE (7) separately. For DM, the initial
object Og was random, and the initial probe was the actual probe Pg = P. 300 iterations were
applied. Reconstruction results are shown in Table 1.

The probe is handled differently in PtychoNet and in iterative algorithms. In our dataset,
the probe was fixed and it was directly provided to DM as initial value. This is crucial for the
algorithm to converge, as the probe is a common factor in all the diffractions. It is advised to
provide a reasonable approximation of the probe as well as a spatial support of the probe to
ensure that the iterative algorithm converges to an optimal solution. In PtychoNet with MSE,
however, the probe was not explicitly given in either training or testing and it was learned
from data. There was no explicit formulation of a matrix P and PtychoNet learned to directly
reverse the diffraction patterns in Fourier space to the real space object.

On the other hand, DSE utilized the known probe P. Comparing Table 1(b) and (c), we
can see that the DFT loss in (c) corrected the contrast in some of the images, because MSE
alone tends to push the pixel output to a mean value, causing the image to look gray and
bland overall, and Fourier constraint alleviated this problem. The parameter λ can be tuned
to adjust this correction.

5.3 Tests on BrainMaps Image Dataset
We also demonstrate here some success in transferring the model learned on natural images
to optical micrograph of biological samples. Biological specimen often presents hierarchi-
cal structures and thus a broad spatial spectrum. Using PtychoNet trained with Caltech-256
(Section 5.1), we computed phase retrieval on BrainMaps [1], a biological microscopic im-
age set. We selected 50 full images and 50 cropped image patches (see Table 2(a)) from
Dataset 1071 to generate 100 real space objects. For each object, one image was used for
phase, scaled and shifted to [0.5,1], and amplitude was set to constant 0.5. The same probe
from Section 5.1 was used to perform ptychography. The results are shown in Table 2. We
can see that even though the contrast and fine details were not perfect, because it was trained
on a different dataset, PtychoNet was still able to capture the structure of the images. This
cross-modality result shows the great potential for modeling more imaging setups and mate-
rials of interest.

5.4 Performance with Low Overlap
Experimentally the current bottleneck of ptychography is often the data acquisition time and
the amount of dose deposited on sample. Sparse sampling with useful resolution can dra-
matically increase the imaging throughput as well as enable imaging of radiation-sensitive
materials or the study of in-situ dynamics. Here we compare the results of PtychoNet and
DM with known probe when the overlap constraint was severely weakened by a sparse scan.
We reduced a 400-point mesh pattern to 25 points, shown in Figure 4. We plotted all the
scanning positions and a few probe windows to show the overlap size. All small light green
and big dark green dots together give the 400 center positions for scanning points. With this
dense scan, the adjacent points are 17 pixels apart, giving an 87% overlap between adjacent
probe windows. Using all 400 points gives a fairly good overlap, so we can expect to have a

1http://brainmaps.org/index.php?action=viewslides&datid=107
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(a) (b) (c)

Amp.

Phase
Mean PSNR – 15.61 9.507
Mean SSIM – 0.7228 0.1633

Table 3: Comparison of reconstructions with low overlap using Caltech-256. (a) Ground
truth. (b) PtychoNet (MSE). (c) DM with known probe.

clean reconstruction similar to Table 1. The sparse case is only using the 25 big dark green
dots. This reduces the overlap to 34%. Considering the probe is almost zero outside the
central disk, which is essentially the spatial extent of the illumination, the overlap is esti-
mated to be around 60% in diameter for the 400-points and 0% for the sparse 25-points. The
reconstructions are shown in Table 3. We can see the iterative algorithm failed to converge
because there was barely any overlap to constrain the object O, but PtychoNet managed to
learn the inverse problem from data and still produced a reasonable estimate. Such dramatic
reduction in the scanning sampling, a factor of 1/16 in this initial demonstration, shows that
PtychoNet could be a powerful method to overcome the aforementioned bottleneck.

6 Extreme Low Overlap Reconstruction with PtychoNet
Initialization

PtychoNet is a non-iterative method for phase retrieval where the output is produced with
deterministic number of operations, different from an iterative approach where hundreds of
iterations are taken before a chosen stopping criterion is met. However, PtychoNet as a deep
neural network essentially acts as a deep approximator learned from data. Even though it
is capable of producing plausible, close-to-real results, it cannot be quantitatively accurate
for all samples and it is prone to shifts in data distributions when working with new data.
Iterative algorithms, on the other hand, are good at refining the output steadily under proper
conditions.
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(a) (b) (c)

Amp.

Phase

Table 4: Comparison of reconstructions with
low overlap using Caltech-256. (a) DM, object
initialized randomly. (b) PtychoNet output. (c)
DM, object initialized by PtychoNet.

0 100 200 300
# iterations

10−1

M
SE

MSE, PtychoNet init
MSE, random init
χ, PtychoNet init
χ, random init

10−2

10−1

100

χ

Figure 3: Comparison of iterative de-
scent using PtychoNet and random ini-
tializations.

Figure 4:
Scanning lay-
out for high and
low overlaps.

For iterative algorithms, a good initialization is especially crucial
for data with low overlap. Here we demonstrate a case where us-
ing PtychoNet as a good initial guess for iterative algorithms is actu-
ally necessary to reconstruct fine features. In the low overlap scenario
shown in Section 5.4, both PtychoNet and DM reconstructions suffered
from varying degrees of degradation. We compare two initializations
of the object using the DM method: one is random, and the other is
the PtychoNet (MSE) output. The test object is taken from Table 3(a)
(0,0). Three hundred iterations were applied and the reconstructions
are shown in Table 4. We report the MSE and the error measured by the
normalized update size χ(t) =

√
∑‖O(t)−O(t−1)‖2/

√
∑‖O(t)‖2 in

Figure 3. We can see that PtychoNet provided a good reconstruction
of low spatial frequency components and thus, with the PtychoNet ini-
tialization, the starting error was significantly lower than that of random initialization. The
final reconstruction (c) was much better than what PtychoNet and DM alone could achieve.
This shows that under adverse conditions (low overlap), machine learning with iterative re-
finement is a great combination for dramatic enhancement in reconstruction quality. Based
on these results, it can be concluded that PtychoNet by itself and PtychoNet-DM essentially
appeals for re-examination of the overlap requirement for ptychography [4] as well as offers
great potential for studies to be performed in regimes previously deemed impossible due to
the limited temporal and spatial resolution achievable in experiments.

7 Conclusions
In this paper we presented PtychoNet, an non-iterative end-to-end method for ptychographic
reconstruction. We have demonstrated successful reconstructions using the method and pre-
sented cross-modality result, from the model trained with Caltech-256 and transferred to
biological samples, giving confidence in the broad applicability of PtychoNet. We have also
shown that the number of scanning positions can be reduced by over an order of magnitude
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while the reconstruction still approximates the ground truth. On the contrary, using DM by
itself with this sparse scanning pattern gives reconstructions with almost no recognizable
features. Moreover, when using PytchoNet result as an initial guess for iterative algorithms,
high spatial frequency components and fine features are successfully reconstructed, which to
our knowledge was not achieved before for dataset with such a sparse scanning. This result
may lead to the re-assessment of the optimal overlap and true potential of ptychography.

In the future, we will extend PtychoNet to provide robust reconstructions with variable
probes. A diverse dataset will be collected with various materials and probes for the deep
neural networks to fully exploit. We will continue to explore deeper networks, adversarial
learning and non-local feature representations to more effectively model the imaging process
and further improve the reconstruction quality.
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