
STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 1

Learning Efficient Detector with
Semi-supervised Adaptive Distillation

Shitao Tang1

shitaot@gmail.com

Litong Feng2

fenglitong@sensetime.com

Wenqi Shao3

weqish@link.cuhk.edu.hk

Zhanghui Kuang2

kuangzhanghui@sensetime.com

Wayne Zhang2

wayne.zhang@sensetime.com

Zheng Lu1

zheng.lu@nottingham.edu.cn

1 The University of Nottingham
Ningbo, China

2 SenseTime Research
Shenzhen, China

3 The Chinese Univerisity of Hong Kong
Hong Kong

Abstract
Convolutional Neural Networks based object detection techniques produce accurate

results but often time consuming. Knowledge distillation has been popular for model
compression to speed up. In this paper, we propose a Semi-supervised Adaptive Dis-
tillation (SAD) framework to accelerate single-stage detectors while still improving the
overall accuracy. We introduce our Adaptive Distillation Loss (ADL) that enables stu-
dent model to mimic teacher’s logits adaptively with more attention paid on two types of
hard samples, hard-to-learn samples predicted by teacher model with low certainty and
hard-to-mimic samples with a large gap between the teacher’s and the student’s predic-
tion. We then show that student model can be improved further in the semi-supervised
setting with the help of ADL. Our experiments validate that for distillation on unlabeled
data. ADL achieves better performance than existing data distillation using both soft and
hard targets. On the COCO database, SAD makes a student detector with a backbone of
ResNet-50 out-perform its teacher with a backbone of ResNet-101, while the student has
half of the teacher’s computation complexity.

1 Introduction
Boosted by the development of deep Convolutional Neural Networks (CNN), the accuracy
of object detection has been improved greatly over the years [15, 17, 21]. Despite satis-
fying detection accuracy, CNN based object detection techniques suffer from long compu-
tational time making them unusable in time-demanding applications such as mobile apps,
self-driving cars, etc. Various efforts have been focused on speeding up the process includ-
ing detection pipeline optimization [15, 17, 21], architecture design [10, 28], pruning [7],
quantization [29], decomposition [12, 25], and knowledge distillation [9].
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Among these works, Knowledge Distillation (KD) shows its advantage in terms of model
acceleration by making use of two networks, namely student and teacher, during the training
to improve the overall accuracy while reducing computational time in testing (student net-
work only). This is done by encouraging the student network to converge to a better solution
through mimicking the teacher network’s feature maps or soften logits. KD has achieved
great success on image classification [9, 22, 27]. However, in the area of object detection,
due to the “small” capacity of the student network, it is very hard to mimic all feature maps or
logits directly. To solve this problem knowledge transfer has been applied in various object
detectors. Chen et al. [2] proposed a weighted cross-entropy loss to underweight matching
errors in background regions. Li et al. [13] mimicked feature maps between the student and
the teacher pooled from the same region proposal and discarded those from uninterested re-
gions. All these efforts attempt to focus on mimicking informative neurons of the teacher
network that contains two stages, namely region proposal network and classification net-
work, despite the obvious efficiency of single-stage detectors. In other words, how KD can
speedup object detectors that has a single network (single-stage) is yet to be exploited.

Compared with two-stage detectors, single-stage detectors needs to use much more sam-
ples due to dense anchors. Without region proposal network, sample imbalance between
easy and hard samples is very challenging for single-stage detectors. Directly applying KD
to single-stage detectors leads to a large number of easy samples dominating the KD loss. As
a result, the lack of guidance from hard samples hinders the performance of single-stage de-
tectors even with KD. We can categorize all the important samples in the distillation process
into two types: 1) hard-to-mimic samples whose gaps between the student’s prediction and
the teacher’s prediction are large; 2) hard-to-learn samples whose uncertainties defined by
teacher’s prediction are large. Both hard-to-mimic and hard-to-learn samples are generated
from teacher model and should be paid more attention for an effective distillation in single-
stage detectors. Based on this observation, an adaptive distillation knowledge loss (ADL)
is proposed, which pays more attention to teacher-defined hard samples and adaptively ad-
justs the distillation weights between easy-to-mimic/easy-to-learn and hard-to-mimic/hard-
to-learn samples in the distillation process. Furthermore, existing techniques mainly focus
on supervised approach that requires labeling object bounding box that is extremely time-
consuming. This indirectly hinders the overall performance of such techniques due to limited
labeled data. Other lines of work such as [18, 23] have demonstrated that unlabeled data can
potentially help image classification and object detection. However, it is still unclear how
to extract the knowledge of unlabeled data to guide the student network training with ap-
proaches like KD.

In this paper, we propose an Semi-supervise Adaptive Distillation (SAD) framework to
learn an efficient object detector. Provided with potentially unlimited unlabeled data from
the Internet, the teacher model in our framework can effectively guide the student model
with significant detection accuracy improvement via the augmented transfer set. Instead of
making use of unlabeled data with labels directly predicted by teacher model (hard targets)
similar to [18], our framework makes use of both hard targets and soft targets provided
by teacher model for better performance. This is because hard targets predicted by teacher
model are often with very high confidence scores and hence can be easily classified in student
model. In contrast, soft targets provided by ADL from teacher model often have a good
balance of samples.
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2 Related work
Semi-supervised learning and self training: Semi-supervised learning has been studied for
years. [1, 11, 18, 23, 30] The goal is to make use of partially labeled data in training stage.
In [23], experiments show that object detectors can gain extra improvement using semi-
supervised instead of fully supervised training. Similarly, data distillation[18] improves the
overall performance by first training a model with labeled data and then using the model to
make predictions on unlabeled data through multi-transform inference and data transforma-
tions. While also using semi-supervise approach, our work focuses on knowledge transfer
from strong teacher to weak student.

Object detection: Object detection techniques can be categorized into single-stage and
two-stage approaches. Two-stage approaches usually consist of two parts, a region proposal
network that generates a sparse set of candidate object proposals and a network to further
refine and classify those proposals. [5, 6, 15, 21] Single-stage approaches directly forward
raw pixel values through a Convolution Neural Network and obtain classification and loca-
tion results. [4, 17, 20] Although working well, both approaches suffer from the problem of
class imbalance. To address this problem, Abhinav et al. [24] introduce Online Hard Exam-
ple Mining (OHEM) by selecting the top k samples according to loss values per mini-batch.
In contrast to two-stage detectors whose region proposal network can reduce the candidate
locations significantly, single-stage detectors suffer more severely from the problem of class
imbalance. Different from OHEM, focal loss [16] aims to pay more attention to hard exam-
ples than easy examples by multiplying a focal term with common cross entropy loss. Our
distillation loss design follows the same spirit of focal loss to solve the problem.

Deep network compression and acceleration: Among many works accelerating Con-
volution Neural Networks for practical applications, knowledge transfer aims to transfer the
knowledge learned by teacher model to student model. Previous work exploit knowledge
transfer by representing knowledge in various forms. For example, FitNet [22] makes stu-
dent model mimic the full feature maps of teacher model. Knowledge Distillation (KD) [9]
supervises student model by using soft targets predicted by teacher model. In this way, the
probability distribution from teacher model provides extra information in contrast to using
one-hot target encoding directly in conventional approaches. Naturally network model com-
pression is applied to object detection as well. Chen et al. [2] utilize soft targets to guide
student model in both region proposal network and region convolution network, and then
balance positive and negative examples by re-weighting losses of positive and negative sam-
ples. Instead of directly addressing the problem of class imbalance, Li et al. [13] propose to
match feature maps after ROI-pooling layer in which the number of candidate regions is sig-
nificantly reduced. These methods are designed for two-stage detectors and cannot be easily
applied to single-stage detectors directly. In this work, our approach is based on the same
idea as KD for acceleration and introduces a uniquely designed loss to address the problem
of class imbalance from a different perspective.

3 Semi-supervised Adaptive Distillation
The overall framework of our adaptive distillation for object detection in an semi-supervised
learning setting is shown in Figure 1. During training, the labeled images are first used
to train the teacher network. Then the labeled and unlabeled images are fed to both the
teacher and student networks to use teacher model to guide student model with our adaptive
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distillation loss with soft targets. If an image does not have ground truths, the predicted label
by teacher model (hard target) is used as ground truth for focal loss computation. During
testing, only the student model is used for acceleration with high detection accuracy thanks
to adaptive distillation and semi-supervised setting.

3.1 Adaptive Distillation
Our adaptive distillation loss is uniquely designed for single-stage detectors. Compared to
two-stage detectors, the distinguishing feature of single-stage detectors is their dense sam-
pling of possible object locations. In a single-stage detector, dense anchors are set on mul-
tiple feature maps in the backbone network, which leads to computational inefficiency. For
example, in KD, distillation loss needs to be calculated on a large number of output logits be-
tween teacher and student models. In RetinaNet [16], a typical number of anchors is ∼100K
and most of those anchors correspond to easy-to-mimic or easy-to-learn samples. Although
an easy sample contributes very little, the distillation loss are dominated by easy samples
during training due to their sheer amounts. As a result, those hard-to-mimic or hard-to-learn
samples are not learned well hence restricting the capacity of KD on a single-stage detector.

Without loss of generality, we study the case of cross entropy for binary classification to
further demonstrate the problem. The original focal loss is defined as

FL(pt) =−(1− pt)
γ log(pt)

pt =

{
p, if y=1
1− p, otherwise

(1)

In above, y∈{±1} specified the ground-truth class and p∈ [0,1] is the model’s estimated
probability for the class with label y = 1.

In the following, We represent q as the soft probability value predicted by teacher model
and p as the one predicted by student model. Kullback-Leibler divergence (KL) inspiring
the original knowledge distillation, which measures the similarity between two distributions,
is defined as:

KL(T ||S) = q log(
q
p
)+(1−q) log(

1−q
1− p

) (2)

Student model tries to mimic the soft class probability distribution predicted by teacher
model by making use of this equation. We abbreviate KL(T ||S) as KL for rest of the pa-
per.

Focal Distillation Loss: The common way of adopting focal loss to knowledge distilla-
tion is to multiply KL by a Focal Term (FT ). If the focal term utilized by the classification
loss (hard targets) is shared by KL (soft targets), the Joint Focal Loss of classifications and
KL can be defined as

JFL = FT (p)(− log(pt)+KL)

FT (p) = (1− pt)
γ

(3)

where FT (p) is the focal term. Thus, the focal distillation loss is:

FDL = (1− pt)
γ KL (4)

where FDL is a simple modification from FL and KL and used as a baseline in our experi-
ments.
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Adaptive Distillation Loss: However, as our experiments show, FDL is usually dom-
inated by the focal term FT . KL contributes little to the total loss. In order to address the
problem, we propose the adaptive distillation loss. Our idea is that that KD on a single-stage
detector should focus on measuring the distance of the probability distributions between
student and teacher models. We use a modulating factor between 0 to 1 learn the features
adaptively. Inspired by KL-divergence, we use the following to accomplish the purpose:

DW = (1− e−KL)γ (5)

where KL is defined in Equation (2). DW is abbreviated for distillation weight. Similar
to the focal loss, hyper-parameter γ controls the rate at which easy examples are down-
weighted. Term (1− e−KL) controls the weight of each sample. Note that DW only adjusts
the weights between the student and teacher during the training process. Given that hard-to-
learn samples are extremely important for distillation, we propose ADW to adjust the weights
of hard-to-learn samples, defined as:

ADW = (1− e−(KL+βT (q)))γ

T (q) =−(q log(q)+(1−q) log(1−q))
(6)

T(q), the entropy of the teacher model, reaches maximum when q is 0.5 and minimum
when q approaches 0 or 1. The teacher’s probability q reflects the uncertainty of classifi-
cation. When q approaches to 0.5, the corresponding sample is treated as a hard-to-learn
sample. And a sample with a high KL is treated as a hard-to-mimic sample. Intuitively, the
weights of the hard-to-learn samples increase when β becomes larger. Thus, KL controls
the weights of hard-to-mimic samples that are adjustable in the training process, while T (q)
controls the weights of hard-to-learn samples initially defined by the teacher model. The
combination of these adaptively adjusts the distillation weights. So our adaptive distillation
loss is defined as:

ADL = ADW ·KL (7)

And for student model, we optimize the following function:

L = FL+ADL+Lloc (8)

FL is the original focal loss and Lloc is the bounding box loss. ADL is the proposed adaptive
distillation loss.

3.2 Semi-supervised Adaptive Distillation Framework
Labeling samples is labor-intensive, especially for the task of object detection. It is natural to
try to make use of unlabeled samples vastly available on the Internet. In our work, we make
use of both labeled and unlabeled samples in a semi-supervised way. Previous work [18]
introduces semi-supervised data distillation (DD), in which the learner exploits all available
labeled data plus unlabeled data from the Internet. The work reveals a strong connection
between the improvement of student model and the amount of unlabeled data used. DD pro-
poses to use final output from the teacher model as the distillation model. These labels can
be generated from the soft targets by selecting high-confident bounding boxes. However, the
low-confident samples dropped by non maximum suppression (NMS) are of great impor-
tance in knowledge transferring as well because these samples are often the ones the student
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Figure 1: Semi-supervised adaptive distillation (SAD) framework. To begin with, the teacher
model selects and annotates samples with at least one annotation and then combines those
selected samples with labeled ones. The student is then trained using ADL+FL+Lloc guided
by the teacher.

model has troubles with. Thus, we propose to use the combination of both hard and soft
targets in our framework. The steps are as follows: 1) train the teacher model with labeled
data; 2) generate hard targets for unlabeled data using the teacher model; 3) train the student
model with both labeled data and unlabeled data using soft targets and hard targets.

4 Experiments
We evaluate our work on the detection task of COCO benchmark [14]. We report all re-
sults by evaluating methods on the mini-val (5k images) or test-dev (41k images) split
with the standard metrics of average precision following the COCO definitions, including
AP,AP50,AP75.

Notation: In the following experiments, 115k COCO labeled images are represented as
co-115 while 120k COCO unlabeled images are represented as un-120

Optimization and loss: We evaluate our technique using RetinaNet, one of the state-of-
the-art single stage detectors. All the hyper-parameters are the same as [16]. All the models
are trained with synchronized SGD over 8 GPUs with a total of 16 images per mini-batch (2
images per GPU). For training models only using co-115, we set the number of iterations to
90000. For training models on both co-115 and un-120, a iteration size of 270000 is used.
The learning rate is divided by 10 at 70% and 90% of the total number of iterations. The
hyper-parameter γ is set as the same for soft target loss and hard target loss, which is 2.

Student-teacher pairs: We validate our technique in different student-teacher pairs.
We first investigate the performance improvement through distillation when the input size is
reduced. In our implementation of KD, the teacher and student models have the same number
of output logits, although input sizes are different. We then simply add a deconvolutional
layer on top of the final feature map of the student model to match the size of the teacher’s
final feature map. We refer this model as ResNet-50-up. In addition to distillation over
different input sizes, we also examine distillation over detectors with different capacities, in
which a strong teacher model distills a weak student model. For example, ResNet-50 distills
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β AP AP50 AP75
Baseline (Student) 28.8 45.8 30.6

0 28.9 45.9 30.6
0.5 29.4 46.3 31.2
1.0 30.5 48.5 32.7
1.5 30.7 48.8 32.7

Method AP AP50 AP75
Baseline (Student) 28.8 45.8 30.6
Feature map mimic 28.8 45.8 30.6

FDL 28.5 45.5 30.2
ADL 30.7 48.8 32.7

Table 1: The left table show results on varying β of ADL with half ResNet as student and
ResNet as teacher. The performance increases as β becomes larger. The right table show
results for different distillation methods with half ResNet as student and ResNet as teacher.
Feature map mimic is to minimize L2 loss between the student and the teacher. FDL is
introduced in Equation (4)

.

half ResNet-50. We refer half ResNet-50 as ResNet-50-half in the following experiments.
Experiments with several pairs of teacher and student models are also conducted.

4.1 Adaptive Distillation Study

We compare different settings of our technique. We use ResNeXt-50 as the teacher and
ResNet-50-half as the student if not specified. The scale is 800*1333.

Feature map mimic: First we evaluate the method of naive logits mimic using L2 loss.
The entire feature map regression is implemented through the mimic mentioned in [13].
Results of logits mimic and entire feature map mimic are shown in Table 1. The mimicked
models do not obtain any improvement compared to the baseline.

Focal distillation loss: We evaluate the loss function that adopts the same focal term be-
tween hard targets and soft targets. Surprisingly, the performance of the student model drops
from 28.8 to 28.5. We attribute the performance decrease to the reason that the supervision
of the ground truth in the focal term is so strong that it neglects the effect of the soft targets.
The gradient is 0 when p is equal to the ground truth. In other words, FDL is not minimum
when p is equal to q.

Adaptive distillation loss: Results using the proposed ADL with varying β are shown
in Table. 1. When β is 0, which is equivalent to DW , ADL does not work well, since the
weights of hard-to-mimic samples are very small. The performance improves as β becomes
larger. With β = 1.5, ADL yields nearly 2 AP improvement over the student. Compared
with FDL, our proposed ADL has the property that the loss is minimum when the output p
produced by the student is equal to q produced by the teacher. Hence, we use β = 1.5 for all
the following experiments.

ADL under different student-teacher pairs: In Table 2, we show distillation results
using co-115 over different student-teacher pairs, with ADL. The performance of the student
models improves significantly with distillation, despite architectural differences between the
teacher and student. In general, the weak student model achieves over 1% improvement in
mAP and 2% in AP50.

4.2 Semi-supervised Adaptive Distillation Study

We also conduct different experiments to evaluate our technique using un-120. The results
are summarized in Table 3.

Citation
Citation
{Li, Jin, and Yan} 2017



8 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

Model scales AP AP50 AP75
ResNet-50 (T) 800 35.4 54.6 37.9

ResNet-50-up (S) 400 29.8 48.8 30.9
ADL 400 31.2 50.9 32.5

ResNet-50 (T) 800 35.4 54.6 37.9
ResNet-50-half (S) 800 28.8 45.8 30.6

ADL 800 30.7 48.8 32.7
ResNeXt-101 (T) 600 37.9 57.2 40.6

ResNet-50 (S) 600 34.3 53.2 36.9
ADL 600 35.2 54.1 37.7

Table 2: Distillation with co-115k using ADL over different student-teacher pairs. ResNet-
50-up refers to the network with deconvolutional layer on the top and ResNet-50-half refers
to ResNet-50 with half channel numbers. S stands for student and T stands for teacher. The
notation is the same in the following table.

Student (scale) Teacher (scale) co-115 GT co-115 ST un-120 HT un-120 ST AP AP50 AP75

ResNet-50-up (400) ResNet-50 (800)

X 28.8 45.8 30.6
X X 32.1 51.6 33.9
X X X 32.3 51.3 34.1
X X X X 33.2 53.2 35.1

ResNet-50-half (800) ResNet-50 (800)

X 28.8 45.8 30.6
X X 32.1 50.6 34.2
X X X 32.3 50.3 34.6
X X X X 33.1 52.1 35.2

ResNet-50 (600) ResNeXt-101 (600)

X 34.3 53.2 36.9
X X 35.6 54.7 37.9
X X X 35.9 54.9 38.5
X X X X 36.6 55.8 38.9

Table 3: Distillation results using un-120 under different settings. Ground truths are ab-
breviated as GT. Soft targets are abbreviated as ST. Hard targets are abbreviated as HT,
representing hard targets produced by the teacher. The notation co-115 is the 115k COCO
training set with annotations while un-120 is the 120k COCO unlabeled set.

Experiment setting: The notation co-115 ST or un-120 ST represents soft targets pro-
duced by the teacher. Ground truths are abbreviated as GT while hard targets are abbreviated
as HT. Hard targets are predicted by the teacher using the method introduced in [18].

Effect of un-120: First, we investigate the method introduced in [18]. Following the pro-
tocol, we generate annotations for un-120k by selecting a threshold that makes “the average
number of annotated instances per unlabeled image” roughly equal to “the average number
of instances per labeled image”. Compared with the student model only using co-115 GT,
the use of un-120 yields significant improvement.

Effect of soft targets and hard targets in un-120: We use both the soft targets and hard
targets of un-120 in the training stage. Note that the soft targets and hard targets are all from
the teacher model. Compared with the distillation model, using only hard targets or only
the soft targets of un-120k, the combination of them yields over 1 AP improvement in all
student-teacher pairs. This shows both the more accurate samples (hard targets) and more
informative samples (soft targets) is effective in knowledge transfer.

4.3 Overall Performance
Student Model Out-perform Teacher Model: We show that the student model can out-
perform the teacher model with our ADL under the semi-supervised setting. In this experi-
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Model Scale AP AP50 AP75
T (ResNet-101) 600 36.0 54.8 38.7
S (ResNet-50) 600 34.3 53.2 36.9

SAD 600 36.3 55.2 38.9
T (ResNeXt-101) 500 36.6 55.5 39.3
S (ResNet-101) 500 34.4 52.7 36.9

SAD 500 36.8 55.7 39.4
Table 4: Results on the union of co-115 and un-120 using the proposed semi-supervised
adaptive distillation. We show that the student can out-perform its teacher.

AP time
YOLOv2 [19] 21.6 25
SSD321 [17] 28.0 61
DSSD321 [4] 28.0 85

R-FCN [3] 29.9 85
SSD513 [17] 31.2 125
DSSD513 [4] 33.2 156

FPN-FRCN [15] 36.2 172
RetinaNet-50-800 35.7 123
RetinaNet-101-500 34.4 90
RetinaNet-101-800 37.8 190

RetinaNet-50-600 (SAD) 36.7 90
RetinaNet-101-500 (SAD) 36.9 90

Table 5: Speed (ms) versus accuracy (AP) on COCO test-dev , which has no public labels
and requires evaluation on servers. Our detector has achieves an AP of 36.8, running at 90
ms per image. The distilled detector is more accurate and faster than RetinaNet-50-800.

ment, it is shown that when the teacher is better than the student without knowledge transfer,
the student can out-perform its teacher with knowledge transfer. We carry out our exper-
iments with two student-teacher pairs: 1) (ResNet-50, ResNet-101) pair; 2) (ResNet-101,
ResNeXt-101) pair. The teacher is trained on co-115 and the student is trained on the union
of co-115 and un-120. The performance of the teachers model are 1.7 and 2.2 higher than
that of the student respectively, but the student with knowledge transfer can still beat the
teacher by some margin. In Table 4, the ResNet-50 (600) [8] student detector can reach
to a mAP of 36.6 guided by the ResNeXt-101 [26] teacher, only slightly higher than the
one guided by ResNet-101 in this experiment. We argue that this limitation of (ResNet-50,
ResNeXt-101) pair is caused by the limited amount of data in the transfer set.

Comparison with other detectors: We compare our distilled detector with different
detectors. As shown in Table 5, our detector is significantly better than any other detector
except FPN-FRCN and RetinaNet-101-800. With a comparable mAP with the above two
detectors, our distilled detector runs 2× faster.

5 Conclusion
In this paper, we design an adaptive distillation loss for single-stage detectors and demon-
strate its effectiveness with RetinaNet in a typical distillation setting. We also propose a
semi-supervised learning framework using this adaptive distillation. Our experimental re-
sults prove the student model can gain significant improvement using both hard targets and
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soft targets produced by the teacher from unlabeled data. The student even out-performs the
teacher given enough transferred data.
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