PrOSe: Product of Orthogonal Spheres Parameterization for Disentangled Representation Learning

Ankita Shukla (Indraprastha Institute of Information Technology), Shagun Uppal (Indraprastha Institute of Information Technology), Sarthak Bhagat (Indraprastha Institute of Information Technology), Saket Anand (Indraprastha Institute of Information Technology), Pavan Turaga (Arizona State University)

Abstract
Learning representations that can disentangle explanatory attributes underlying the data improves interpretabilty as well as provides control on data generation. Various learning frameworks such as VAEs, GANs and auto-encoders have been used in the literature to learn such representations. Most often, the latent space is constrained to a partitioned representation or structured by a prior to impose disentangling. In this work, we advance the use of a latent representation based on a product space of Orthogonal Spheres PrOSe. The PrOSe model is motivated by the reasoning that latent-variables related to the physics of image-formation can under certain relaxed assumptions lead to spherical-spaces. Orthogonality between the spheres is motivated via physical independence models. Imposing the orthogonal-sphere constraint is much simpler than other complicated physical models, is fairly general and flexible, and extensible beyond the factors used to motivate its development. Under further relaxed assumptions of equal-sized latent blocks per factor, the constraint can be written down in closed form as an ortho-normality term in the loss function. We show that our approach improves the quality of disentanglement significantly. We find consistent improvement in disentanglement compared to several state-of-the-art approaches, across several benchmarks and metrics.

DOI
10.5244/C.33.209
https://dx.doi.org/10.5244/C.33.209

Files
Paper (PDF)

BibTeX
@inproceedings{BMVC2019,
title={PrOSe: Product of Orthogonal Spheres Parameterization for Disentangled Representation Learning},
author={Ankita Shukla and Shagun Uppal and Sarthak Bhagat and Saket Anand and Pavan Turaga},
year={2019},
month={September},
pages={209.1--209.13},
articleno={209},
numpages={13},
booktitle={Proceedings of the British Machine Vision Conference (BMVC)},
publisher={BMVA Press},
editor={Kirill Sidorov and Yulia Hicks},
doi={10.5244/C.33.209},
url={https://dx.doi.org/10.5244/C.33.209}
}